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Abstract 
This presentation aims to introduce global sensitivity analysis (SA), targeting an audience unfamiliar with 
the topic, and to give practical hints about the associated advantages and the effort needed.  
 
To this efffect, we shall review some techniques for sensitivity analysis, including those that are not global, 
by applying them to a simple example. This will give the audience a chance to contrast each method’s 
result against the audience’s own expectation of what the sensitivity pattern for the simple model should be.  
We shall also try to relate the discourse on the relative importance of model input factors to specific 
questions, such as “Which of the uncertain input factor(s) is so non-influential that we can safely fix 
it/them?” or “If we could eliminate the uncertainty in one of the input factors, which factor should we 
choose to reduce the most the variance of the output?”  
 
In this way, the selection of the method for sensitivity analysis will be put in relation to the framing of the 
analysis and to the interpretation and presentation of the results. The choice of the output of interest will be 
discussed in relation to the purpose of the model based analysis. 
 
The example will show how the methods are applied in a way that is unambiguous and defensible, so as to 
making the sensitivity analysis an added value to model-based studies or assessments. This shall be put into 
context in relation with the post-modern critique of the use of mathematical models.  
 
When discussing sensitivity with respect to factors, we shall interpret the term “factor” in a very broad 
sense: a factor is anything that can be changed prior to the execution of the model, possibly from a prior or 
posterior, continuous or discrete distribution. A factor can either be stochastically or epistemically 
uncertain. Factors can be “triggers”, used to select one versus another model structure, one mesh size 
versus another, or altogether different conceptualisations of the system. The links with established Bayesian 
model averaging procedures will be mentioned.   
 
The main methods that we present in this lecture are all related with one another, and are the method of 
Morris for factors’ screening and the variance-based measures. All are model-free, in the sense that their 
application does not rely on special assumptions on the behaviour of the model (such as linearity, 
monotonicity and additivity of the relationship between input factor and model output). Monte Carlo 
filtering will be also be mentioned in relation of a framing of the analysis where the question of interest is 
“Which of the input factors is mostly responsible for producing realisations of the output of interest in a 
given target region?”  
 
Filtering will help us to treat a second example, where we try to demonstrate the usefulness of global 
sensitivity analysis in relation to estimation, in line with the theme of the workshop. 
 
We shall wrap up with some considerations abut recommended practices in sensitivity analysis. 
 
Introduction 
The material in this presentation is taken from a primer on global sensitivity analysis entitled “Sensitivity 
Analysis in Practice: A Guide to Assessing Scientific Models” by Andrea Saltelli, Stefano Tarantola, 



Francesca Campolongo and Marco Ratto. This will appear with  John Wiley & Sons by early 2004, and we 
shall refer to it as to Saltelli et al., 2004 in the following. The primer aims at guiding a non-expert user in 
the choice of the method to adopt for the user own problem. The methods recommended include the 
variance based measures, the method of Morris, and Monte Carlo filtering, e.g. some effective methods for 
global sensitivity analysis.  
 
Global sensitivity analysis is the study of how the uncertainty in the output of a model (numerical or 
otherwise) can be apportioned to different sources of uncertainty in the model input”. Global could be an 
unnecessary specification here, were it not for the fact that most analysis met in the literature are local or 
one-factor-at-a-time. 
 
All models have use for sensitivity analysis. Applications worked by the Joint Research Centre group for 
Applied Statistics include: Atmospheric chemistry (Campolongo et al., 1999a), transport emission 
modelling, fish population dynamics (Campolongo et al. 1999b), composite indicators (Tarantola et al. 
2002), portfolios, oil basins models (Saltelli, 2002), capital adequacy modelling (for Basle II), 
macroeconomic modelling, radioactive waste management (Saltelli and Tarantola, 2002). Applications 
from several practitioners can be found in Saltelli et al. Eds. 2000, a multi-author book. 
 
Prescriptions have been issued for sensitivity analysis of models when these used for policy analysis.  
In Europe, the European Commission recommends sensitivity analysis in the context of the extended 
impact assessment guidelines and handbook (2002). Similar recommendation in the United States EPA’s 
White Paper on model use acceptability (1999) 
 
The EC handbook for extended impact assessment, a working document by the European Commission, 
2002, states:  “A good sensitivity analysis should conduct analyses over the full range of plausible values of 
key parameters and their interactions, to assess how impacts change in response to changes in key 
parameters”.  The EPA paper (1999) is less prescriptive, but insists on the need for uncertainty and 
sensitivity analysis. 
 
Even leaving prescriptions aside, one cannot ignore that models have not escaped the post-modern critique 
of the role of science in society. Specific critiques of simulation modelling and model validation have been 
frequent in recent years. One example: <<[…] most simulation models will be complex, with many 
parameters, state-variables and non linear relations. Under the best circumstances, such models have 
many degrees of freedom and, with judicious fiddling, can be made to produce virtually any desired 
behaviour, often with both plausible structure and parameter values.>>, Hornberger  and  Spear 1981.  
 
Also from within the modelling community reminders of the problem were frequent: Konikov and 
Bredehoeft, 1992, proclaims: "Groundwater models cannot be validated". This cry of alarm was taken up 
by Oreskes et al. 1994, in an article on Science entitled "Verification, Validation and Confirmation of 
numerical models in the earth sciences", both works focusing on the impossibility of model validation. 
Two established laboratory, IIASA and RIVM, had considerable trouble with the perceived quality of their 
models, see Mac Lane 1989, and van der Sluijs  2002 respectively. The post-modern French thinker Jean 
Baudrillard (1990) presents 'simulation models' as unverifiable artefact which, used in the context of mass 
communication, produce a fictitious hyper realities that annihilate truth. Science for the post modern age is 
discussed in Funtowicz and Ravetz 1990, 1993, 1999, mostly in relation to Science for policy use, a 
settings which Gibbons (1994) calls “mode 2” scientific production. 
 
Faced with these critiques, the modelling community may consider that a quality check as that which is 
provided by a careful sensitivity analysis is worth its effort.    
 
Before we discuss the methods for sensitivity analysis, we would like to say a few words about the output 
Y of interest. In our experience, the target  of interest should not be the model output per se, but the 
question that the model has been called to answer. To make an example, if a model predicts contaminant 
distribution over space and time, it is the total area where a given threshold is exceeded at a given time 
which would play as output of interest, or the total health effects per time unit. 
 



One should seek from the analyses conclusions of relevance to the question put to the model,  
as opposed to relevant to the model, e.g.   
 
• Uncertainty in emission inventories [in transport] are driven by variability in driving habits more than 

from uncertainty in engine emission data.  
• In transport with chemical reaction problems, uncertainty in the chemistry dominates over uncertainty 

in the inventories.  
• Engineered barrier count less than geological barriers in radioactive waste migration. 
 
This remark on the output of interest clearly applies to model use, not to model building, where the analyst 
might have interest in studying a variety of intermediate outputs.    
 
First example, the obvious test case. 
We move now to a self-evident problem, to understand the methods as applied to it. This is a simple linear 
form: 
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Y is the output of interest (a scalar), iΩ  are fixed coefficients, Zi are uncertain input factors distributed as 
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Y will also be normally distributed with parameters: 
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To make our point we stipulate as additional assumptions:  
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According to most of the existing literature, SA should be done by taking derivatives, such as:  
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would seem to suggest that if our purpose is to rank input factors in terms to their contribution to the 
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This is a nice result: the terms add to 1, and each of them gives the fractional contribution of the factor to 
the variance of the output. Unfortunately this only works for linear models.  
 
 
If we want to tackle nonlinear models as well, we have to abandon derivatives and move into “exploration” 
of the input factors space, e.g. via Monte Carlo. 
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and run our computer program estimating the corresponding model output 
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A natural thing to do at this point is to regress the y’ s on the zi’s to obtain a regression model  
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packages will already provide the regression in terms of standardised regression coefficients 
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are better than the derivatives in several respects.  
 

Although for non linear models ( ) 1
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This is given by the model coefficient of determination 
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decompose a fraction 2
yR of the model variance using the 

iZβ . Furthermore the coefficients  
iZβ    offer a 

measure of sensitivity  that is multi-dimensionally averaged, unlike the σ
iZS . For linear model this does not 

matter but it does, and a lot for non linear ones. The drawback is when 12 <<yR ; typically  2
yR     can be 

zero or near it for non monotonic models.   
 
In summary, we like the idea of decomposing the variance of the model output according to source (the 
input factors), but would like to do this for all models, independently from their degree of linearity or 
monotonicity. We would like a model-free approach. 
 



In order to get there, we take a somehow twisted path and start asking ourselves the question: If I could 
determine the value of an uncertain factor, e.g. one of our iZ     and thus fix it, how much would the 

variance of the output decrease? E.g. imagine the true value is *
iz  and hence we fix  iZ  to it obtaining   a 

“reduced” conditional variance: ( )*
ii zZYV = . There are two problems with this quantity being a good 

measure of sensitivity. First I do not know where to fix the factor, and secondly for non-linear model one 
could have ( ) )Y(VzZYV *

ii ≥= . 

 
This difficulty can be overcome by averaging this measure over the distribution of the uncertain factors  
obtaining ( )( )iZYVE , or ( )( )iZ ZYVE

ii −Z  where we have made explicit the variables over which mean 

and variance operators are applied. This measure has the property that ( )( ) )Y(VZYVE i ≤  always, and 

in particular ( )( ) ( )( ) )Y(VZYEVZYVE ii =+ , where the term ( )( )iZYVE  is called a residual, and 

the term ( )( )iZYEV  is known as the first order effect of iZ  onY . A nice property of the main effect is 
that it is large when a factor is influent. Furthermore it is easy to verify that for linear models 
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holds for a much larger class of models: that of the additive models. For non additive models, 

( ) 1
1

≤∑ =

r

j Z i
S , which is also a way to define non-additive models. Yet the measure  

iZS  is very useful 

for all models, as it provides a rigorous answer to a precise sensitivity analysis setting: setting FP, for 
factors prioritisation. Let us then make a digression here, and describe this setting.  
 
Factors’ Prioritisation (FP) Setting. Imagine that I must bet on a factor that, once “discovered” in its true 
value and fixed, would reduce the most V(Y). Of course I do not know where the true values are for the 
factors, hence I cannot compare the ( )*

ii zZYV =  for the various factors. Hence the best choice I can 

make is, by definition, to choose the factor with the highest ( )( )iZYEV  or , which is the same, the highest 

( )( )
)Y(V
ZYEV

S i
Zi
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To complete all this, we must say something about non additive model treatment, so let us complicate our 
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 by allowing both the iΩ  and Zi to be uncertain, i.e. 
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c is a constant greater than zero (note: if the mean of the iΩ  were also null as that of the iZ , then the 
model would be fully non-additive, as we shall see in a moment).  
 
Our set of uncertain input factors is now )Z,...Z,Z,,...,( rr 2121 ΩΩΩ≡X . We start crunching number 
estimating the sensitivity measures and we obtain the following results:     
All  
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indices on more than one factor. If we do that, we find that  
( )( )

ji ZZ
Y

ji SS
V

Z,ZYEV
+= , while, instead: 

( )( )
ii Z

Y

ii SS
V

Z,YEV
+>

Ω
Ω . The difference 

( )( )
iiii Z

Y

ii
Z SS

V
Z,YEV

S −−
Ω

= ΩΩ  is the second order 

(or two-way) effect of the two factors. We have discovered that our model is additive with respect to 

ji ZZ SS , , and non additive with respect to 
ii ZSS ,Ω .   

 
 
Adding all the non-zero first order terms and all the non-zero second order terms gives back 1, i.e. 100% of 
the variance of Y is accounted for.  
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For our model, all other terms of whatever order (1,2,3…2r) is zero. In general, if k is the total number of 
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It is quite rare that in practical applications one computes all terms in the development above. The number 
of terms grows exponentially with k.  
 
We are customarily happy with computing all the iS  plus a full set of synthetic terms called TiS  which 
give for each factor Xi, the effect of all terms including that factor.   
 
 
What are the total effect terms TiS  and why do we need them? Let us compute one of them, by starting 

with the measure 
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There is a considerable symmetry between the the iS  and TiS . Both indices can be computed in a single  



shot at the cost  of about N(k+2) simulations,  where N is between 100 and 1000, to give an idea. In 
Saltelli, 2002, we use an extension of the method of Sobol’, 1993. Both indices can also be computed using 
the Fourier based FAST method, as extended in Saltelli et al., 1999.  
 
Furthermore iS  is ideal for factor prioritisation setting, already described, while TiS  is ideal for the 
“factors fixing” setting (of which more in a moment). 
 
A nice property of  TiS  is that if one is desperate for less expensive simulations, a rough estimate of these 
can be obtained via the method of Morris, at less than 1/10 of the cost, see Morris 1991. (We prefer to 
compute a “modulus” version of the test statistics, as described in Chapter 4, Campolongo et al., in Saltelli 
et al. Eds., 2000). 
 
Finally one last useful property of variance based methods is their application “by groups”, e.g.  

1=++ ZΩ,ZΩ SSS , where r,..., ΩΩΩ= 21Ω . The computational cost of this is just 3N. Or I can 
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latter expression all higher order terms are zero because there are interactions only within  )Z,(A iii Ω= . 
 
Although in the first regrouping we save a lot in terms of model execution, and in the second we don’t, 
there might be reasons other than economy to regroup factors. I might want to groups factors in different 
submodels. In this way, if I can fix all factors in the submodels may be I can skip the submodel altogether. I 
might want to separate controllable factors from uncontrollable ones, and so on.  
 
A second example. What can sensitivity offer for parameter estimation. 
Let us now move to an estimation/calibration problem for a computational model with six parameters. We 
do not know how the model is done – imagine it is a computer code. The output of interest Y is a measure 
of likelihood is obtained after comparing the model prediction Y’ with data, e.g.  
 
Y=exp(-[sum of squared residuals of the predicted Y’ versus the data]). 
 
How can we characterise the good parameter set for calibration? A scatter plots of log-likelihood (e.g. of 
the sum of scores) vs. parameters is not very informative (Figure 1). Even “filtering”, e.g. taking the best 
outcomes, those with the highest log-likelihood, leaves us in the dark (Figure 2). Plotting the factors value 
for the input (Figure 3) as well as for the input corresponding to the best values (Figure 4) is likewise non 
informative. Note that if we computed on the filtered input factors (Figure 4) the pairwise correlation 
coefficients we would obtain zeros. Also Principal Component Analysis would not be informative as 
applied to the filtered input sample, as there are no correlations among the filtered factors. Computing the 
first order sensitivity indices for the log-likelihood and the second order ones (Figure 5), a story starts to 
emerge; there are non zero second order effects, but only within the closed groups involving factors (1,2,3) 
and (4,5,6). Computing the third order effect (Figure 6) again only those pertaining to (1,2,3) and (4,5,6) 
are non zero. Regrouping and adding the terms up gives an interesting result:        
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where we have used the supescript c symbol to denote the effects closed within the indices. The variance of 
the problem is characterised by two groups of three factors. Higher term orders are zero.  
 
This leads the investigator to conclude that what could be reasonably estimated are two unknown  functions 
of two parameter sub-sets. We can now reveal that the unknown function, our computer program, was the 
sum of two speres. 
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Were the investigator to identify this structure, by trial and error, he/she would conclude that all that 
estimation can provide are the two radiuses. 
 
This concludes our illustration of sensitivity analysis as applied to a diagnostic setting, and we would now 
like to come back to our discussion of the settings for sensitivity analysis.   
 
 
More on the settings for sensitivity analysis. 

We have already mentioned that the sensitivity measure of the first order, 
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measure for factor prioritisation. It is also easy to see that the total effect measure 
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appropriate for a setting that we could call “Factors Fixing”: Can I fix a factor [or a subset of input factors] 
at any given value over their range of uncertainty without reducing significantly the output variance? If 
factor iX  is totally non influent, then all the variance is due to i−X , and fixing this vector results in 

( ) 0=
−i

YV X . It is easy to see that the reverse is also true so that necessary and sufficient condition for 

iX  to be totally non influent is 0≡TiS . 
 
Other settings that we have found useful are the following.   
 
• Factors mapping: Which factor is mostly responsible for producing realisations of Y in the region of 

interest? This can be treated with Monte Carlo Filtering and related tools  (described elsewhere at this 
workshop). 

 
• Variance cutting: Reducing the variance of the output of a prescribed amount fixing the smallest 

number of factors. This setting can be dealt with using a combination of the iS  and TiS  measures 
(Saltelli and Tarantola, 2002).  

 
Why do we need settings? One way in which a sensitivity analysis can go wrong is because its purpose is 
left unspecified or vague (e.g. “find the most important factors”). One throws different statistical tests and 
measures to the problem and obtains different factors rankings. What can then be concluded? Models can 
be audited and settings for sensitivity analysis can be audited as well. For this reason we believe that 
importance must be defined beforehand.  
 
A few more comments on practices 
What else can go wrong in a sensitivity analysis? Two instances come to mind:  
 
• There are too many outputs of interest, as we discussed at the beginning. What is the question asked 

from the model? Is the model relevant to the question? The optimality of a model must be weighted 
with respect to the task, according to a current mode of thinking. According to Beck et al. 1997, a 
model is “relevant” when its input factors actually cause variation in the model response that is the 
object of the analysis. Model “non-relevance” could flag a bad model, or a model used out of context 
(e.g. a gun to kill a fly). Excess complexity could also be used to silence or to fend off criticism from 
stakeholders, e.g. in environmental assessment studies. 



 
• Patchy or piecewise sensitivity (performed by sub-model, or one possible model at a time, or one 

factor at a time). Not only conflicts with the requirement of focus just mentioned, but leads to a 
dangerously incomplete exploration of the uncertainties; interactions are overlooked. All uncertainties 
should be explored simultaneously. Also the procedure of fixing non influent factors should be 
conducted in this way, as fixing factors based on their first order effect can be dangerous as discussed 
above. The iΩ  of our initial example all have first order equal zero.  

 
• A posteriori sensitivity. Once an analysis has been produced, its revision via sensitivity analysis by a 

third party is not something most modellers will willingly submit to. Sensitivity analysis should be 
used in the process of model development, prior and within model use in analysis. 

 
One should never forget that an unpleasant (or pleasant, depending from the viewpoint) feature of 
sensitivity analysis is that it might falsify the analysis altogether, e.g. by showing that the model cannot 
answer the question given the uncertainties, or that the model is irrelevant, or that the variation in the 
output of interest (e.g. a contamination level in an estuary) is insensitive to the available policy options 
given the uncertainties. A nice example that shows how SA can falsify a model as applied to a policy issue 
is described in Chapter 20, Tarantola et al., of Saltelli et al., Eds. 2000.  
  
 
Conclusions   
We can itemise our main conclusions as follows. 
 
• There is an increased need, scope and prescription for quantitative uncertainty and sensitivity analyses. 

Methods are mature for use, e.g. in terms of literature, software, computational cost, tested practice, 
ease of communication.  

 
• In spite of this one observes a “slow start” of quantitative methods in practical analyses 
 
• Variance based measure are concise, easy to understand and to communicate, reduce to the elementary 

test (the standardised regression coefficients 2
ii

β ) for linear model, relate to the popular method of 
Morris. 

 
• We also like and use methods in the MC filtering family. 
 
• Whatever the method one uses, we think it important that the framing of the analysis be defensible and 

meaningful to its users. 



Figure 1. Log-likelihood for the six input factors  

Figure 2. Same as Figure 1, for values of log-likelihood > -200. 



 
 

Figure 3. Pairwise scatterplots of input factors 

 

Figure 4. Same as the previous figure, for values of log-likelihood > -200 

 
 

 
 
 



 
 
Figure5. First and second order sensitivity indices for the log-likelihood 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Third order sensitivity indices for the Log-likelihood 
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Notes 
The Joint Research Centre  distributes freely the software SIMLAB for uncertainty and sensitivity analysis. 
More information from stefano.tarantola@jrc.it. Marco Ratto (marco.ratto @jrc.it) has developed a set of 
scripts in Matlab to run global sensitivity analysis in diagnostic settings (e.g. with filtering plus variance 
based methods, see our two-sphere example). This is also available.  
 
A forum to discuss sensitivity analysis issues is available at 
http://sensitivity-analysis.jrc.cec.eu.int/.  
It includes a FAQ section, introduction to the main methods and a 
bibliography.  
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